old - Fazer Owners Club - old
		Bikes, Hints'n'Tips => FZS600 Fazer => Topic started by: faz6 on 29 December 2013, 08:48:58 am
		
			
			- 
				whats oil do you recommend for 02 600 fazer  cheers
			
- 
				10W-40 semisynthetic-any decent brand
			
- 
				 semi 10w40 is that especially for bikes
			
- 
				A long read and a big copy/paste but it does answer you question 
 
 Motor Oil Viscosity Grades
 What does the SAE Viscosity rating on your Motoroil bottle mean?
 How do they come up with this rating . . .really?
 Most of the time when viscosity is explained words are used that are too technical for the average person to quickly grasp. This leaves them still wondering what the viscosity numbers really mean on a bottle of motor oil. Simply put, viscosity is the oil's resistance to flow or, for the layman, an oil's speed of flow as measured through a device known as a viscometer. The thicker (higher viscosity) of an oil, the slower it will flow. You will see oil viscosity measurement in lube articles stated in kinematic (kv) and absolute (cSt) terms. These are translated into the easier to understand SAE viscosity numbers you see on an oil bottle.
 OK . . .What does a 5W-30 do that an SAE 30 won't?
 When you see a W on a viscosity rating it means that this oil viscosity has been tested at a Colder temperature. The numbers without the W are all tested at 210° F or 100° C which is considered an approximation of engine operating temperature. In other words, a SAE 30 motor oil is the same viscosity as a 10w-30 or 5W-30 at 210° (100° C). The difference is when the viscosity is tested at a much colder temperature. For example, a 5W-30 motor oil performs like a SAE 5 motor oil would perform at the cold temperature specified, but still has the SAE 30 viscosity at 210° F (100° C) which is engine operating temperature. This allows the engine to get quick oil flow when it is started cold verses dry running until lubricant either warms up sufficiently or is finally forced through the engine oil system. The advantages of a low W viscosity number is obvious. The quicker the oil flows cold, the less dry running. Less dry running means much less engine wear.
 SAE Viscosity Chart (High Temp)
 100° C (210° F)
 SAE
 Viscosity
 Kinematic
 (cSt)
 100° C Min
 Kinematic
 (cSt)
 100° C Max
 20   5.6   <9.3
 30   9.3   <12.5
 40   12.5   <16.3
 50   16.3   <21.9
 60   21.9   <26.1
 Winter or "W" Grades
 SAE
 Viscosity
 Low Temp (°C) Viscosity cP
 Kinematic
 (cSt)
 100° C Min
 Cranking
 Max
 Pumping
 Max (NYS)
 0W   3,250 @ -30   60,000 @ -40   3.8
 5W   3,500 @ -25   60,000 @ -35   3.8
 10W   3,500 @ -20   60,000 @ -30   4.1
 15W   3,500 @ -15   60,000 @ -25   5.6
 20W   4,500 @ -10   60,000 @ -20   5.6
 25W   6,000 @ -5   60,000 @ -15   9.3
 Obviously, cold temperature or W ratings are tested differently than regular SAE viscosity ratings. Simply put, these tests are done with a different temperature system. There is a scale for the W, or winter viscosity grades and, depending on which grade is selected, testing is done at different temperatures. See the Tables to the right below for more information.
 Basically to determine non-winter grade viscosity using a viscometer a measured amount of oil at 100° C is allowed to flow through an orifice and timed. Using a table they determine SAE viscosity based on different ranges. Thicker or heavy viscosity oils will take longer to flow through the orifice in the viscometer and end up in higher number ranges such as SAE 50 or SAE 60 for example. If an oil flows through faster being thinner/lighter then it will wind up in a low number range such as SAE 10 or SAE 20 for example. Occasionally it is possible for an oil to barely fall into one viscosity range. For example, an oil is barely an SAE 30 having a time that puts it on the very low side. Then another oil is timed to be an SAE 20 on the high side not quite breaking into the SAE 30 numbers. Technically speaking these oils will be close to the same viscosity even though one is an SAE 20 and the other an SAE 30. But you have to draw the line somewhere and that's how the SAE system is designed. Another system takes more accurate numbers into account known as cSt abbreviated for centistokes. You'll see these numbers used often for industrial lubricants such as compressor or hydraulic oils. The table at the right, SAE Viscosity Chart (High Temp), shows the equivalents for cSt and SAE viscosity numbers. You'll see the ranges for cSt compared to SAE numbers. An oil that is 9.2 cSt will be nearly the same viscosity as an oil that is 9.3 cSt, yet one is an SAE 20 and the other is an SAE 30. This is why the cSt centistokes numbers more accurately show oil viscosity.
 Now if you look at the table labeled Winter or "W" Grades, you can get valuable information on how the W or winter grade viscosities are measured. Basically, as shown by the chart, when the oil is reduced to a colder temperature it is measured for performance factors. If it performs like a SAE 0 motor oil at the colder temperature, then it will receive the SAE 0W viscosity grade. Consequently, if the motor oil performs like a SAE 20 motor oil at the reduced temperatures (the scale varies - see the chart), then it will be a SAE 20W motor oil.
 If a motor oil passes the cold temperature or W (winter grade) specification for a SAE 15W and at 210° F (100° C) flows through the viscometer like a SAE 40 motor oil, then the label will read 15W-40. Getting the picture? Consequently, if the motor oil performs like a SAE 5 motor oil on the reduced temperature scale and flows like a SAE 20 at 210° F (100° C), then this motor oil's label will read 5W-20. And so forth and so on!
 I can't tell you how many times I have heard someone, usually an auto mechanic, say that they wouldn't use a 5W-30 motor oil because it is, "Too thin." Then they may use a 10W-30 or SAE 30 motor oil. At engine operating temperatures these oils are the same. The only time the 5W-30 oil is "thin" is at cold start up conditions where you need it to be "thin."
 So how do they get a motor oil to flow in the cold when it is a thicker viscosity at 210° F?
 The addition of Pour Point Depressant additives (VI) keep the paraffin in petroleum base oils from coalescing together when temperature drops. Pour Point Depressants can keep an oil fluid in extreme cold temperatures, such as in the arctic regions. We will not go into Pour Point Depressing additives at this time except to say they are only used where temperatures are very extreme to keep the motor oil from becoming completely immobilized by the cold temperature extreme. For now we will just discuss the Viscosity Improvers (VI) additives.
 Why don't we just use a SAE 10 motor oil so we can get instant lubrication on engine start up?
 The reason is simple: it would be a SAE 10 motor oil at 210° F! The lower the viscosity, the more wear will inevitably occur. This is why it is best to use the proper oil viscosity recommended by the auto manufacturer as it will protect hot and at cold start ups. Obviously a 10W-10 motor oil won't have the film strength to prevent engine wear at full operating temperature like a 5W-20, 10W-30 or 5W-30 motor oil for example.
 The VI additives have the effect of keeping the oil from thinning excessively when heated. The actual mechanics of this system are a little more complex in that these additives are added to a thinner oil so that it will be fluid at a cold temperature. The VI additives then prevent thinning as the oil is heated so that it now can pass the SAE viscosity rating at 210. For example; if you have a SAE 10 motor oil it will flow like a 10W at the colder temperature. But at 210 degrees it will be a SAE 10 giving us a 10W-10 or SAE 10 viscosity rating. Obviously this is good at cold start up, but terrible at engine operating temperature especially in warmer climates. But by adding the VI additives we can prevent the oil from thinning as it is heated to achieve higher viscosity numbers at 210 degrees. This is how they make a petroleum based motor oil function for the 10W-30 rating. The farther the temperature range, like with a 10W-40, then more VI additives are used. With me so far? Good, now for the bad news.
 Drawbacks of Viscosity Improving additives
 Multi-grade motor oils perform a great service not being too thick at cold startup to prevent engine wear by providing more instantaneous oil flow to critical engine parts. However, there is a draw back. These additives shear back in high heat or during high shear force operation and break down causing some sludging. What's worse is once the additive begins to be depleted the motor oil no long resists thinning so now you have a thinner motor oil at 210 degrees. Your 10W-30 motor oil can easily become a 10W-20 or even a SAE 10 (10W-10) motor oil. I don't have to tell you why that is bad. The more VI additives the worse the problem which is why auto manufacturers decided to steer car owners away from motor oils loaded with VI additives like the 10W-40 and 20W-50 viscosities.
 The less change a motor oil has from high to low temperatures gives it a high Viscosity Index. Synthetic motor oils that are made from Group IV (4) PAO base stocks have Viscosity Indexes of more than 150 because they are manufactured to be a lubricant and don't have the paraffin that causes the thickening as they cool. But petroleum based motor oils (Group I (1) & II (2)) usually have Viscosity Indexes of less than 140 because they tend to thicken more at the colder temperature due to the paraffin despite the addition of Viscosity Improving additives. The higher the Viscosity Index number the less thinning and thickening the motor oil has. In other words, high number good, low number bad. Low numbers thicken more as they cool and thin more hot. You see these Viscosity Index ratings posted on data sheets of motor oils provided by the manufacturer.
 As already mentioned, VI improving additives can shear back under pressure and high heat conditions leaving the motor oil unable to protect the engine properly under high heat conditions and cause sludging. Also there is a limit to how much viscosity improving additives can be added without affecting the rest of the motor oil's chemistry. Auto manufacturers have moved away from some motor oils that require a lot of viscosity improving additives, like the 10W-40 and 20W-50 motor oils, to blends that require less viscosity additives like the 5W-20, 5W-30 and 10W-30 motor oils. Because stress loads on multi viscosity motor oils can also cause thinning many racers choose to use a straight weight petroleum racing motor oil or a PAO based Synthetic which do not have the VI additives. But only the Group IV (4) PAO based synthetics generally don't need VI additives. Read on to learn why:
 What about synthetic motor oils? Do they need Viscosity Additives?
 Group IV (4) and Group V (5) base oil (synthetics) are chemically made from uniform molecules with no paraffin and generally don't need Viscosity Additives. However, in recent years Group III (3) based oils have been labeled "synthetic" through a legal loophole. These are petroleum based Group II (2) oils that have had the sulfur refined out making them more pure and longer lasting. Group III (3) "synthetic" motor oils must employ Viscosity Additives being petroleum based.
 Group V (5) based synthetics are usually not compatible with petroleum or petroleum fuels and have poor seal swell. These are used for air compressors, hydraulics, etc. It's the Group IV (4) PAO based synthetics that make the best motor oils. They are compatible with petroleum based oils and fuels plus they have better seal swell than petroleum. Typically PAO based motor oils use no Viscosity Index additives yet pass the multi-grade viscosity requirements as a straight weight! This makes them ideal under a greater temperature range. One advantage of not having to employ Viscosity Improving additives is having a more pure undiluted lubricant that can be loaded with more longevity and performance additives to keep the oil cleaner longer with better mileage/horsepower.
 How do I know what motor oil is a Group IV (4) based PAO synthetic motor oil?
 As more and more large oil companies switched their "synthetic" motor oils to the less expensive/more profitable Group III (3) base stocks it has become much easier to identify which are PAO based true synthetic. Of the large oil companies, only Mobil 1 Extended Performance, as of this writing (12-16-2012), is still a PAO based true synthetic. The rest, including regular Mobil 1 and Castrol Edge have switched to the cheaper/more profitable Group III (3) petroleum based "synthetic" motor oil. AMSOIL Synthetic Motor Oils are PAO based true synthetic motor oils with the exception of the short oil drain OE and XL synthetic motor oils sold at some Auto Parts Stores and Quick Oil Change Centers. This leaves more than 20 PAO based true synthetic motor oils manufactured and marketed by AMSOIL with only a few Group III (3) based synthetic motor oils identified by the "OE" and "XL" product name.
 So as you can see, the average performance of motor oils can be affected by how they change during their service life. Multi grade petroleum can lose viscosity and thin causing accelerated wear as the VI additives shear back. Straight weight petroleum (i.e. SAE 30, SAE 40) thicken a lot as they cool meaning longer time before lubricant reaches critical parts on cold starts, but have no VI additives so they resists thinning. However, they can degrade and thicken as heat and by products of combustion affect the unsaturated chemistry. Group III (3) synthetics resists this degradation much better, but being petroleum based employ some VI additives which is a negative and typically don't have as good performance in the volatility viscosity retention areas. Only the Group IV (4) PAO base synthetics have the saturated chemistry to resist degrading when exposed to the by products of combustion and heat, plus typically employ no VI additives making them very thermally stable for longer periods. For this reason the Group IV (4) synthetics maintain peak mileage and power throughout their service life
 Modern motor oils are a marvel of chemistry to be sure. There are a lot more additives in play than the few mentioned here. The API (American Petroleum Institute - sets oil standards in the U.S.), ILSAC (International Lubricants Standardization and Approval Committee - U.S. & Japanese auto/truck manufacturers standards for motor oil) and ACEA (Association des Constructeurs Europeens d'Automobiles - European auto/truck manufacturer oil standards) are some of the different organizations you will see providing rating information on the service grades of different motor oils. Plus there are some auto manufacturers like Mercedes, BMW and Volkswagen that have unique oil standards for their cars. You need to read your owner's manual clearly to be sure you are using the proper oil for your application.
 Some of these organizations, such as the API and ILSAC, have reduced friction modifier amounts in order to extend the life of catalytic converters and reduce pollution. These will increase wear but will be still within the "acceptable wear" range. Because of the increased wear and expense of licensing these oils some companies will not certify for API & ILSAC in order to achieve a higher level of performance. People with older engines that do not have roller cams find these oils especially attractive to maintain a reduced level of engine wear. AMSOIL only has 5 motor oils certified for the API & ILSAC for this reason (the four XL-7500 Branded motor oils and the semi-synthetic 15W-40 PCO). The rest of the nearly 30 synthetic motor oils are not certified in order to maintain the higher levels of friction modifier to maintain the enhanced level of performance necessary for their targeted market. In other words, the less expensive motor oils made by AMSOIL are API & ILSAC certified while the high end more expensive performance motor oils are not. One reason companies like AMSOIL and Mobil are at odds with the reduced friction modifier standards is they don't take into consideration the reduced volatility of PAO based motor oils which leads to much less pollution and thereby less problems for the catalytic converter. Even with the full wear preventing additives these oils do not produce the pollution of petroleum motor oils. For this reason AMSOIL has left the friction modifier levels high and skips certification for these higher performing motor oils. For more information read the Motor Oil Quality Progresses With Engine Technology (Good information on motor oil service ratings) and Why does Motor Oil Deteriorate?
 For more information also see:
 How to Read an Oil Bottle - What do those API, SAE and ILSAC Numbers Mean?
- 
				Oh yeah.... When u do change the oil... Make sure u change the washer and do the sump plug up properly or else ur fooked as i nearly was coupla weeks ago  
			
- 
				In a nut shell,
 10W-40 semi, decent brand, as above
 with an API 'S' rating (spark ignition)    SG(min)  -  better SE or SF,
 but
 DO NOT use any with a 'C' (compression ignition rating for diesels) of CD or higher
 or any labelled "Energy conserving II" as these may cause clutch slip because of their additives package
 
 And I recommend using a K&N filter (KN-147) they have a nut on the end to make it easier to remove, although I have a good tool anyway
- 
				Ah no, oil!
			
- 
				Any half decent 10w-40 semi synthetic MOTORCYCLE oil will do, the more important thing is to change it between every 4000-6000 miles.
 Personally i opt around the 4000 mark but the revised spec suggests up to 6000 so the choice is yours.
- 
				Silkolene Super 4 10w/40 Fazers love it and it's cheaper than most equivalents, it really is possible to get quality cheaper!!  
			
- 
				+1 for that
 
 I've been using HG 10/40 semi as I got a job lot the last time they went into receivership but the Silkolene Super def makes the bike sound smoother
- 
				Oh yeah.... When u do change the oil... Make sure u change the washer and do the sump plug up properly or else ur fooked as i nearly was coupla weeks ago 
 
 
 
 Please may I ask why it's important to change the washer if it's (visually) in perfect condition?
 
 
 Also, OP, perhaps stating the obvious, but changing the oil filter at the same time as changing oil seems to be good practice.
 
 
 I recently got a good deal from Busters Motorcyles on eBay - 30 quid for oil and filter, free postage. Arrived next day!!
- 
				I went to my LBS a few years ago to get oil and filter for a change. On the way out the door I said that I'd better get a washer for the sump plug and he duly gave me one.
 
 
 anyhoo, when I was putting the sump plug back in, I realised that he'd given me a 14mm stainless washer.
 
 
 Worked OK BTW!
- 
				Oh yeah.... When u do change the oil... Make sure u change the washer and do the sump plug up properly or else ur fooked as i nearly was coupla weeks ago 
 
 
 
 Please may I ask why it's important to change the washer if it's (visually) in perfect condition?
 
 
 Sometime they bow very slightly after being tightened so although it may look ok it might not seal properly. The last thing u want is an oil leak after u just changed the oil so as it's only a coupla pence its worthwhile. (Thanks for that red98 )
- 
				It's called a crush washer, cos that's exactly what happens to it, and how it helps to seal. You'll get away with it a time or two, maybe more, but eventually (I guess!) it'll not be to deform where needed anymore, and you'll struggle to get the seal at the right torque... 
			
- 
				Thanks. I will replace at next oil change. Need a new sump nut as well, current one a bit battered!
			
- 
				I use castrol act-evo cause its a nice red colour, and makes me feel good when I change it and its still a nice red colour.
			
- 
				Makes no difference to me so long as its 10-40w and made for bikes.
 I used to spend £15 a litre on the pukka stuff but I change my oil every 2-3k so now I just use the €17 for 4 litre stuff from louis.de.
 It always comes out clean at every oil change time so why spend the extra coin...
- 
				 and you'll struggle to get the seal at the right torque... 
 
 
 How do you get a torque wrench on a fazer sump plug ?
- 
				You use a crows foot. 
 
 Actually I don't, but fact remains, if the crush washer is completely crushed, then you'll have to tighten to extreme, to get the seal - which will be way over whatever is specified.
- 
				Ah right. Think we've had the crows foot discussed in this scenario before. For what it's worth I've never changed the washer, think it just needs a bit of feel on the part of the spanner wielder.
			
- 
				Yep.... Always struggle with the crows foot....... N end up reaching for the camel toe!!!
 If that don't do it............ Then just fuck it n put it down as experience  :evil
- 
				Might be a daft question, but do the header pipes for the exhaust need to be removed to get the filter out? Going to tackle mine soon as it got battered over 2500 miles in a week last summer. 
			
- 
				no, you can get it out with the exhaust in place :)
 
 (the K&N filter with the nut on top makes life much easier!)
 
- 
				Just use a filter chain to remove -simples- ;) 
			
- 
				Awesome, I'd seen the k&n one which would mean I wouldn't have to borrow the tool off my dad each time! 
			
- 
				where is the sump drain plug on a fzs600
			
- 
				where is the sump drain plug on a fzs600
 
 
 
 
 Download this for now, but worth getting yourself a proper book manual as well.
 
 
 http://foc-u.co.uk/index.php?action=downloads;sa=view;down=22 (http://foc-u.co.uk/index.php?action=downloads;sa=view;down=22)
- 
				Just for the record i ran my fazer last year on 5W 30.mainly coz i focced up with not reading the online description properly.....bike ran sweet....no issues.
 
 
 But i have treated it with Activ8  :lurk :lurk :lurk :thumbup
 
 
 
 And here's a pic of a new sump plug & washer.....note the washer was loose in the bag so prob just chucked in as an after thought, it is skanky looking but really lightweight ie doesnt feel like metal, plus it is thick, but i think these qualities add to its crushability.....so i wouldnt just use any old washer.
 
 
 Only cost a couple o quid so i bought 2 to save me the hassle this year when i change the oil.
 
 
 For once i used some forward thinking. 8)
- 
				Just for the record i ran my fazer last year on 5W 30.mainly coz i focced up with not reading the online description properly.....bike ran sweet....no issues.
 
 
 But i have treated it with Activ8  :lurk :lurk :lurk :thumbup
 
 
 
 And here's a pic of a new sump plug & washer.....note the washer was loose in the bag so prob just chucked in as an after thought, it is skanky looking but really lightweight ie doesnt feel like metal, plus it is thick, but i think these qualities add to its crushability.....so i wouldnt just use any old washer.
 
 
 Only cost a couple o quid so i bought 2 to save me the hassle this year when i change the oil.
 
 
 For once i used some forward thinking. 8)
 
 
 Did i hear someone say Activ8?  :thumbup
- 
				
 
 Did i hear someone say Activ8?  :thumbup
 
 
 
 That's the forward planning i was referring to.
 
 
 
 Ha ha, i knew i'd reel you in with that one Darrsi :lol
 
 
 To be fair though the noggyfighter has sustained some consistent abuse & is not giving me any engine or gearbox  issues, very slick i must say, even with 5w30.& with crashing....& constant red lining.
 
 
 Some people wear a cross on a chain to get good luck & longevity.
 
 
 Others Omega 3, 6 & 9
 
 
 Many swear by olive oil
 
 
 Real men trust Activ8 :) :smokin
 
 
 have they got any jobs going?????? :rolleyes
 
 
- 
				Did i hear someone say Activ8?  :thumbup  
 Is a waste of money as is all the other oil additives for any normal road use in my opinion, modern oils contain all these so called additives already.  All these claims of improved power etc, etc have been disproved or couldn't be proved by the motoring press over and over, and any proved improvements were so small as to be unnoticeable to a driver/rider think they call in the "placebo effect"!  In my experience some of these additives have been found to cause poor running, increased fuel consumption, dirty emissions, even damage!  How you say, they are base on compounds that have much smaller molecules hence the claim of less friction, which is true.  That said however these molecules find their way past oil seals, rings and are burnt, especially turbo seals where the intercoolers are turned into oil tanks!  This reduces power, increases fuel consumption and emissions plus as far as I know NO manufacturer recommends their use...........
 
 Oils coupled with better quality materials and higher machining accuracy are areas where things have moved on massively in the last 20yrs lots of car manufactures have for sometime now increased oil changes to 20k plus even newer Porsche's! Admittedly bike oil also lub's the gear boxes and the shearing motion does degrade the oil faster but not as fast as they will have you believe.  Yamaha actually increased the service intervals for the Fazer 600 in 01 from 4k to 6k and they had done nothing to it just acknowledgement of better oils and less service time.
 
 I did some test 10yrs ago when I had access to oil testing and run my then car (Omega V6) on fully syth Mobile 1 it was still in grade and clean with minimal contamination hence it still being clean after 40K.  I looked after a Hyabusa run on the same bike specific oil after 5k running on good quality semi syth it was run on fully syth tested every 3k it was still clean and in grade at 20k and he used to run it in Ultimate Super Bike as it was at the time.  I'm NOT saying you should just disregard what manufactures tell you as my experiments where under control conditions with access to all the right kit but many owners change their oil way too soon halving what is the recommended intervals.  Mostly based on auto service industry recommendations based on 50 year old information why..........they sell oil and filters!
 
 You need nothing more than a good quality semi syth even full syth is a waste in normal use in your average weather conditions, and at least stick to manufactures oil change intervals..............but if you want to add it that's your choice.
- 
				Did i hear someone say Activ8?  :thumbup  
 Is a waste of money as is all the other oil additives for any normal road use in my opinion, modern oils contain all these so called additives already.  All these claims of improved power etc, etc have been disproved or couldn't be proved by the motoring press over and over, and any proved improvements were so small as to be unnoticeable to a driver/rider think they call in the "placebo effect"!  In my experience some of these additives have been found to cause poor running, increased fuel consumption, dirty emissions, even damage!  How you say, they are base on compounds that have much smaller molecules hence the claim of less friction, which is true.  That said however these molecules find their way past oil seals, rings and are burnt, especially turbo seals where the intercoolers are turned into oil tanks!  This reduces power, increases fuel consumption and emissions plus as far as I know NO manufacturer recommends their use...........
 
 Oils coupled with better quality materials and higher machining accuracy are areas where things have moved on massively in the last 20yrs lots of car manufactures have for sometime now increased oil changes to 20k plus even newer Porsche's! Admittedly bike oil also lub's the gear boxes and the shearing motion does degrade the oil faster but not as fast as they will have you believe.  Yamaha actually increased the service intervals for the Fazer 600 in 01 from 4k to 6k and they had done nothing to it just acknowledgement of better oils and less service time.
 
 I did some test 10yrs ago when I had access to oil testing and run my then car (Omega V6) on fully syth Mobile 1 it was still in grade and clean with minimal contamination hence it still being clean after 40K.  I looked after a Hyabusa run on the same bike specific oil after 5k running on good quality semi syth it was run on fully syth tested every 3k it was still clean and in grade at 20k and he used to run it in Ultimate Super Bike as it was at the time.  I'm NOT saying you should just disregard what manufactures tell you as my experiments where under control conditions with access to all the right kit but many owners change their oil way too soon halving what is the recommended intervals.  Mostly based on auto service industry recommendations based on 50 year old information why..........they sell oil and filters!
 
 You need nothing more than a good quality semi syth even full syth is a waste in normal use in your average weather conditions, and at least stick to manufactures oil change intervals..............but if you want to add it that's your choice.
 
 
 
 We knew you'd say that!!!! :b
 
 
 See you on the next malfunction thread  :lol :lol :lol
- 
				Just changed my oil and filter, and have just seen the warning in the haynes manual about not over tightening the filter. 
 
 
 May I just ask, what are the issues with this, as I used the crows foot tool to nip it up so it's on a bit tighter than finger tight, but as the crows foot was ill fitting it's bent the filter casing slightly.
 
 
 Worth replacing again for peace of mind or should it be ok?
 
 
 If it did need replacing, i assume its a full oil out job etc. again!
 
 
 Sorry for what may seem like a trivial issue, I just have an ocd about this sort of thing!!!! (and it was my first full oil/filter change in a long long time)
- 
				As you've discovered if too much force is applied the filter body will twist after all its really nothing more than a can!
 
 The same will happen when you try to remove it if you over tighten them, which then turns a very simple job into a right pain often having to puncher the filter to remove it with restricted space and all the mess, it can mean removal of the down tubes!
 
 If you've bent/twisted your filter putting it on you will without doubt have difficulties removing it after 6k.
 
 I would recommend you replace it now, get the correct tool, jack up the front end so as to rest the rear wheel on the ground this will save as much of your new oil as possible.  There will be some spillage but not a great deal fit a new filter tighten it hand tight and then a 1/4 turn with the filter tool, top up the oil and clean the down tubes job done.
- 
				brill thanks for the quick reply! 
 
 
 Thats something for the weekend then, next time i should throughly read the haynes manual which I have (now) downloaded haha
 
 
 So it's more a question of ease of removing next time rather than functionality? I'm not planning on using it much between now and the spring but just wanted to make sure that it's going to do it's job right.
- 
				 "....In my experience some of these additives have been found to cause poor running, increased fuel consumption, dirty emissions, even damage!...."
 
 But i have the opposite of all of the above.  :D
- 
				As I've never had any difficulties removing old oil filters (a few taps against the rim with a sharpened screwdriver aimed about 20º steeper than the tangent always shifts them easily), I can't see the point in wasting a new filter. Let it do its job and change it at the recommended interval.
			
- 
				That washer  as far as I know it should be an Auluminium one like a dohnut that crushes when done up -- its called a crush washer so that you dont have to tighten the nut up so much
 
 
 (http://foc-u.co.uk/index.php?action=dlattach;topic=11141.0;attach=9485;image) (http://foc-u.co.uk/index.php?action=dlattach;topic=11141.0;attach=9486;image)
- 
				That's a BIG photo of a washer.  :lol 
			
- 
				I copied and pasted and it came out at the enlarged full size
			
- 
				That is a BIG photo haha. 
 
 
 It's not the washer though thats the issue, rather the filter itself.
 
 
 I'll see how it goes on then and keep an eye on it.
- 
				As you've discovered if too much force is applied the filter body will twist after all its really nothing more than a can!
 
 The same will happen when you try to remove it if you over tighten them, which then turns a very simple job into a right pain often having to puncher the filter to remove it with restricted space and all the mess, it can mean removal of the down tubes!
 
 If you've bent/twisted your filter putting it on you will without doubt have difficulties removing it after 6k.
 
 I would recommend you replace it now, get the correct tool, jack up the front end so as to rest the rear wheel on the ground this will save as much of your new oil as possible.  There will be some spillage but not a great deal fit a new filter tighten it hand tight and then a 1/4 turn with the filter tool, top up the oil and clean the down tubes job done.
 
 
 
 :agree
 
 
 
 
 Thouhg I skip the 1/4 turn part. Just smear some new oil on the filter sealing rubber ring and tighten it with bare hands. Even greasy ones. No problems - never had a filter leak, or twist off. And it goes off easily, but I have to use a tool.